首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3615篇
  免费   387篇
  国内免费   392篇
  2024年   4篇
  2023年   85篇
  2022年   75篇
  2021年   125篇
  2020年   156篇
  2019年   166篇
  2018年   172篇
  2017年   136篇
  2016年   138篇
  2015年   190篇
  2014年   213篇
  2013年   281篇
  2012年   159篇
  2011年   179篇
  2010年   140篇
  2009年   175篇
  2008年   204篇
  2007年   160篇
  2006年   183篇
  2005年   140篇
  2004年   130篇
  2003年   120篇
  2002年   113篇
  2001年   117篇
  2000年   94篇
  1999年   61篇
  1998年   83篇
  1997年   56篇
  1996年   55篇
  1995年   57篇
  1994年   54篇
  1993年   57篇
  1992年   38篇
  1991年   28篇
  1990年   29篇
  1989年   21篇
  1988年   17篇
  1987年   32篇
  1986年   11篇
  1985年   17篇
  1984年   20篇
  1983年   17篇
  1982年   26篇
  1981年   11篇
  1980年   9篇
  1979年   13篇
  1978年   7篇
  1977年   7篇
  1976年   5篇
  1958年   3篇
排序方式: 共有4394条查询结果,搜索用时 118 毫秒
81.
Retinal ischemia and reperfusion injuries (R‐IRI) damage neuronal tissue permanently. Recently, we demonstrated that Argon exerts anti‐apoptotic and protective properties. The molecular mechanism remains unclear. We hypothesized that Argon inhalation exert neuroprotective effects in rats retinal ganglion cells (RGC) via an ERK‐1/2 dependent regulation of heat‐shock proteins. Inhalation of Argon (75 Vol%) was performed after R‐IRI on the rats′ left eyes for 1 h immediately or with delay. Retinal tissue was harvested after 24 h to analyze mRNA and protein expression of heat‐shock proteins ?70, ?90 and heme‐oxygenase‐1, mitogen‐activated protein kinases (p38, JNK, ERK‐1/2) and histological changes. To analyze ERK dependent effects, the ERK inhibitor PD98059 was applicated prior to Argon inhalation. RGC count was analyzed 7 days after injury. Statistics were performed using anova . Argon significantly reduced the R‐IRI‐affected heat‐shock protein expression (p < 0.05). While Argon significantly induced ERK‐1/2 expression (p < 0.001), inhibition of ERK‐1/2 before Argon inhalation resulted in significantly lower vital RGCs (p < 0.01) and increase in heme‐oxygenase‐1 (p < 0.05). R‐IRI‐induced RGC loss was reduced by Argon inhalation (p < 0.001). Immunohistochemistry suggested ERK‐1/2 activation in Müller cells. We conclude, that Argon treatment protects R‐IRI‐induced apoptotic loss of RGC via an ERK‐1/2 dependent regulation of heme‐oxygenase‐1.

  相似文献   

82.
One of the fundamental functions of molecular chaperone proteins is to selectively conjugate cellular proteins, targeting them directly to lysosome. Some of chaperones, such as the stress-induced Hsp70, also play important roles in autophagosome-forming macroautophagy under various stress conditions. However, the role of their co-chaperones in autophagy regulation has not been well defined. We here show that Tid1, a DnaJ co-chaperone for Hsp70 and the mammalian homologue of the Drosophila tumor suppressor Tid56, is a key mediator of macroautophagy pathway. Ectopic expression of Tid1 induces autophagy by forming LC3+ autophagosome foci, whereas silencing Tid1 leads to drastic impairment of autophagy as induced by nutrient deprivation or rapamycin. In contrast, Hsp70 is dispensable for a role in nutrient deprivation-induced autophagy. The murine Tid1 can be replaced with human Tid1 in murine fibroblast cells for induction of autophagy. We further show that Tid1 increases autophagy flux by interacting with the Beclin1-PI3 kinase class III protein complex in response to autophagy inducing signal and that Tid1 is an essential mediator that connects IκB kinases to the Beclin1-containing autophagy protein complex. Together, these results reveal a crucial role of Tid1 as an evolutionarily conserved and essential mediator of canonical macroautophagy.  相似文献   
83.
The constitutively expressed heat shock protein 70 kDa (Hsc70) is a major chaperone protein responsible for maintaining proteostasis, yet how its structure translates into functional decisions regarding client fate is still unclear. We previously showed that Hsc70 preserved aberrant Tau, but it remained unknown if selective inhibition of the activity of this Hsp70 isoform could facilitate Tau clearance. Using single point mutations in the nucleotide binding domain, we assessed the effect of several mutations on the functions of human Hsc70. Biochemical characterization revealed that one mutation abolished both Hsc70 ATPase and refolding activities. This variant resembled the ADP-bound conformer at all times yet remained able to interact with cofactors, nucleotides, and substrates appropriately, resembling a dominant negative Hsc70 (DN-Hsc70). We then assessed the effects of this DN-Hsc70 on its client Tau. DN-Hsc70 potently facilitated Tau clearance via the proteasome in cells and brain tissue, in contrast to wild type Hsc70 that stabilized Tau. Thus, DN-Hsc70 mimics the action of small molecule pan Hsp70 inhibitors with regard to Tau metabolism. This shift in Hsc70 function by a single point mutation was the result of a change in the chaperome associated with Hsc70 such that DN-Hsc70 associated more with Hsp90 and DnaJ proteins, whereas wild type Hsc70 was more associated with other Hsp70 isoforms. Thus, isoform-selective targeting of Hsc70 could be a viable therapeutic strategy for tauopathies and possibly lead to new insights in chaperone complex biology.  相似文献   
84.
Glycerol‐3‐phosphate (G3P) has been suggested as a novel regulator of plant defense signaling, however, its role in algal resistance remains largely unknown. The glycerol kinase (also designated as NHO1) and NAD‐dependent G3P dehydrogenase (GPDH) are two key enzymes involved in the G3P biosynthesis. In our study, we cloned the full‐length cDNA of NHO1 (NHO1Ph) and GPDH (GPDHPh) from the red alga Pyropia haitanensis (denoted as NHO1Ph and GPDHPh) and examined their expression level under flagellin peptide 22 (flg22) stimulation or heat stress. We also measured the level of G3P and floridoside (a downstream product of G3P in P. haitanensis) under flg22 stimulation or heat stress. Both NHO1Ph and GPDHPh shared high sequence identity and structural conservation with their orthologs from different species, especially from red algae. Phylogenetic analysis showed that NHO1s and GPDHs from red algae were closely related to those from animals. Under flg22 stimulation or heat stress, the expression levels of NHO1Ph and GPDHPh were up‐regulated, G3P levels increased, and the contents of floridoside decreased. But the floridoside level increased in the recovery period after heat stress. Taken together, we found that G3P metabolism was associated with the flg22‐induced defense response and heat stress response in P. haitanensis, indicating the general conservation of defense response in angiosperms and algae. Furthermore, floridoside might also participate in the stress resistance of P. haitanensis.  相似文献   
85.
This article reflects on the relations between xenophobic parties and immigration policy in Italy. It argues that the salience of the Northern League (Lega Nord), the instability of the Italian party system and the recent transformation of Italy from an emigration country to an immigration country all contribute to Italy's difficulty in achieving a coherent immigration policy. Since the first comprehensive immigration policy emerged in 1998 with the Turco-Napolitano law, there have been six changes of government, with frequent oscillation between centre-right and centre-left coalitions. While the effects of these oscillations, particularly of the centre-right's effort to restrict immigrants’ rights and entry possibilities, have been dampened by the Italian courts and the European Union, it is still problematic to speak of an Italian model. Drawing on Carvalho's book, this article will address the effects of the Lega on creating and maintaining this policy imbalance.  相似文献   
86.
87.
Plasmodium falciparum encounters frequent environmental challenges during its life cycle which makes productive protein folding immensely challenging for its metastable proteome. To identify the important components of protein folding machinery involved in maintaining P. falciparum proteome, we performed a proteome‐wide phylogenetic profiling across various species. We found that except HSP110, the parasite lost all other cytosolic nucleotide exchange factors essential for regulating HSP70 which is the centrum of the protein folding network. Evolutionary and structural analysis shows that besides its canonical interaction with HSP70, PfHSP110 has acquired sequence insertions for additional dynamic interactions. Molecular co‐evolution profile depicts that the co‐evolving proteins of PfHSP110 belong to distinct pathways like genetic variation, DNA repair, fatty acid biosynthesis, protein modification/trafficking, molecular motions, and apoptosis. These proteins exhibit unique physiochemical properties like large size, high iso‐electric point, low solubility, and antigenicity, hence require PfHSP110 chaperoning to attain functional state. Co‐evolving protein interaction network suggests that PfHSP110 serves as an important hub to coordinate protein quality control, survival, and immune evasion pathways in the parasite. Overall, our findings highlight potential accessory roles of PfHSP110 that may provide survival advantage to the parasite during its lifecycle and febrile conditions. The data also open avenues for experimental validation of auxiliary functions of PfHSP110 and their exploration for design of better antimalarial strategies. Proteins 2015; 83:1513–1525. © 2015 Wiley Periodicals, Inc.  相似文献   
88.
Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = −14.8 ± 3.3°C and −6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions, and behavioral responses may alter predictions of studies that ignore these biological details.  相似文献   
89.
Fitness costs associated with resistance to insecticides have been well documented, usually at normal temperature conditions, in many insect species. In this study, using chlorpyrifos‐resistant homozygote (RR) and chlorpyrifos‐susceptible homozygote (SS) of resistance ace1 allele of Plutella xylostella (DBM), we confirmed firstly that high temperature experience in pupal stage influenced phenotype of wing venation in insecticide‐resistant and insecticide‐susceptible Plutella xylostella, and SS DBM showed significantly higher thermal tolerance and lower damages of wing veins under heat stress than RR DBM. As compared to SS DBM, RR DBM displayed significantly lower AChE sensitivity to chlorpyrifos, higher basal GSTs activity and P450 production at 25°C, but higher inhibitions on the enzyme activities and P450 production as well as reduced resistance to chlorpyrifos under heat stress. Furthermore, RR DBM displayed significantly higher basal expressions of hsp69s, hsp72s, hsp20, hsp90, Apaf‐1, and caspase‐7 at 25°C, but lower induced expressions of hsps and higher induced expressions of Apaf‐1, caspase‐9, and caspase‐7 under heat stress. These results suggest that fitness costs of chlorpyrifos resistance in DBM may partly attribute to excess consumption of energy caused by over production of detoxification enzymes and hsps when the proteins are less demanded at conducive environments but reduced expressions when they are highly demanded by the insects to combat environmental stresses, or to excess expressions of apoptotic genes under heat stress, which results in higher apoptosis. The evolutionary and ecological implications of these findings at global warming are discussed.  相似文献   
90.
Small heat shock proteins (sHsps) are a family of large and dynamic oligomers highly expressed in long-lived cells of muscle, lens and brain. Several family members are upregulated during stress, and some are strongly cytoprotective. Their polydispersity has hindered high-resolution structure analyses, particularly for vertebrate sHsps. Here, crystal structures of excised α-crystallin domain from rat Hsp20 and that from human αB-crystallin show that they form homodimers with a shared groove at the interface by extending a β sheet. However, the two dimers differ in the register of their interfaces. The dimers have empty pockets that in large assemblies will likely be filled by hydrophobic sequence motifs from partner chains. In the Hsp20 dimer, the shared groove is partially filled by peptide in polyproline II conformation. Structural homology with other sHsp crystal structures indicates that in full-length chains the groove is likely filled by an N-terminal extension. Inside the groove is a symmetry-related functionally important arginine that is mutated, or its equivalent, in family members in a range of neuromuscular diseases and cataract. Analyses of residues within the groove of the αB-crystallin interface show that it has a high density of positive charges. The disease mutant R120G α-crystallin domain dimer was found to be more stable at acidic pH, suggesting that the mutation affects the normal dynamics of sHsp assembly. The structures provide a starting point for modelling higher assembly by defining the spatial locations of grooves and pockets in a basic dimeric assembly unit. The structures provide a high-resolution view of a candidate functional state of an sHsp that could bind non-native client proteins or specific components from cytoprotective pathways. The empty pockets and groove provide a starting model for designing drugs to inhibit those sHsps that have a negative effect on cancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号